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Abstract

Mean similarity dendrograms are introduced as a new graphical tool for evaluating

classifications, based on sample data from replicate objects within each of the proposed

classes.  The dendrograms compare the mean similarities between objects within the same

class to the mean similarity between objects in different classes. They were designed to

complement multidimensional scaling plots and permutation tests of class structure. The

dendrograms offer a concise picture of the overall strength of a classification as well as the

compactness and isolation of individual classes. Although broadly applicable, the dendrograms

were motivated by a need for easily-communicated assessments of land classifications that are

intended to serve as geographic frameworks for environmental research and management. The

dendrograms and other similarity-based tools are applied to a single-factor classification of

fish communities sampled along a 281-km section of the Willamette River in Oregon, USA. 

In a second example, the tools are used to evaluate a two-factor classification of fish

communities sampled in wadeable streams of Oregon's Cascade Mountains and Willamette

Valley. The dendrograms help to assess the relative classification strengths of the two factors,

factor interactions, and an alternative classification derived from cluster analysis. 

Key Words: ecoregions; fish communities; permutation tests; multidimensional scaling;

ordination; cluster analysis; classification.
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1. Introduction

Environmental scientists and managers have drawn from a broad spectrum of

methodologies for developing classifications of ecosystems and their components. Methods

for ecological land classification, for example, range from strictly numerical approaches such

as cluster analysis, to qualitative, map-based "regionalizations", in which large areas are

progressively subdivided using rules deduced from general ecological principles at landscape

scales (Huang and Ferng 1990; Conquest et al. 1994).  Relatively few tools are available,

however, for evaluating the strength and utility of a proposed classification, based on

multivariate measurements of objects within each class.   

This paper presents a novel graphical display, the mean similarity dendrogram, for

evaluating low-order classifications. The dendrograms were designed to complement existing

nonparametric ordinations and hypothesis tests that employ a pairwise measure of similarity

between the objects being classified (Clarke and Green 1988; Smith et al. 1990). Taken

together, these graphical and testing methods directly assess the degree to which objects

within the same class are more similar to each other than they are to objects in different

classes. For classes that have been chosen independently of the similarity matrix, permutation

methods provide a test of the hypothesis that mean within-class similarities exceed the mean

similarity between classes. The new dendrogram complements such tests by plotting within

and between-class mean similarities in a compact format. In addition, the dendrogram format

helps illustrate whether individual classes are compact (all objects within a class are highly

similar to each other) and at the same time isolated (objects within a class are dissimilar to

objects in all other classes) (Cormack 1971; Gordon 1981).

Although similarity-based assessments of classification strength are applicable in any

grouping context, they appear particularly useful for evaluating ecosystem and/or land

classifications that are intended as frameworks for environmental management and research

(Omernik 1987; Omernik and Griffith 1991; Hughes et al. 1994). The assessments can help to

choose one from among competing classifications of ecosystem types (e.g., Naiman et al.

1992) or geographic areas (Omernik and Griffith 1991). In addition, researchers and managers
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often wish to use a particular land classification derived from one set of ecosystem attributes

(such as soils and topography) to group a different set of attributes (such as biological

communities).  One might then wish to assess the classification's strength for the second set

of attributes.  Finally, similarity measures and analyses are often preferable for ecological data

types, such as species abundance lists, that do not satisfy the distributional assumptions of the

conventional multivariate methods (multivariate analysis of variance, discriminant analysis)

used to compare groups (Clarke and Warwick 1994; Ludwig and Reynolds 1988).

     In this paper, I apply similarity-based graphical and testing methods to regional

classifications of riverine ecosystems. Geographic regions that were originally delineated

using factors such as soils, climatic variables, and topographic relief are evaluated for their

ability to classify fish communities sampled from streams within the regions (Hughes et al.

1987, 1994; Whittier et al. 1988; Omernik and Griffith 1991). The data sets consist of lists of

fish species sampled at each of several replicate stream sites within each regional class. 

Mean similarity dendrograms are first defined and developed in the context of an

example data set having a single, externally-determined classification factor with four classes.

Permutation tests and multidimensional scaling ordinations are briefly reviewed and applied to

the same data. The single-factor example demonstrates the ability of mean similarity

dendrograms to compare the compactness and isolation of individual classes and to

complement the tests and ordinations. 

Dendrograms, along with an ordination and hypothesis tests, are then presented for a

second example data set in which fish communities are classified a priori by two factors. In

the two-factor example, the dendrograms help assess factor interactions and the relative

classification strengths of the two factors.  An a posteriori classification of the same data is

also developed through cluster analysis.  Hypothesis test results of the a priori and a

posteriori classifications cannot be compared because such tests are not valid for the latter

case. The compact dendrogram format, however, offers a useful visual comparison of the two

approaches.
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2. Site Similarity, Multidimensional Scaling, and Permutation Tests

2.1 Data Sources for Single-Factor Example     

Hughes and Gammon (1987) sampled fish assemblages in 1983 at 26 sites along a

281-km stretch of the mainstem Willamette River in Oregon (Figure 1). They divided the

stretch into four contiguous sections, beginning at the river mouth, based on channel depth

and mapped channel gradients: a freshwater tidal section (Section A, kilometer 0 to 43,

containing 7 sites), a flat pool section (Section B, kilometer 43 to 84, with 4 sites), a section

with low map gradient (Section C, kilometer 84 to 212, with 4 sites), and a shallow, upper

section with higher map gradient (Section D, kilometer 212 to 301, with 4 sites). Hughes and

Gammon hypothesized that these four stretches would effectively classify the river's fish

communities into distinct groups. The 1983 sampling effort repeated a fish survey carried out

in 1944 at 21 sites along the same river stretch (Dimick and Merryfield, 1945), and a similar

survey was conducted yet again in 1992 at 19 sites (TetraTech, 1993). Only a small number

of sites were common to all three surveys. 

Here, I use data from the three surveys (1944, 1983, and 1992) to illustrate similarity-

based tools for assessing classifications. The goal is to evaluate the strength, and consistency

over time, of Hughes and Gammon's (1987) four river sections for classifying fish

assemblages in the mainstem Willamette. 

2.2 Site Similarity 

Let s  be the similarity between sites i and j , with s =s  . Numerous similarityij ij ji

measures and their properties have been explored for use in ecological settings (Green, 1980;

Washington, 1984; Digby and Kempton, 1987; Boyle et al. 1990). In this paper, I employ a

single, simple measure that is widely used for comparing biological communities. The

measure reflects the list of species present at each site, but not their abundances.

 The Jaccard similarity between sites i and j, based on species presence/absence, is

given by s =C /(C +U +U ), where C  is the number of species common to the two sites, andij ij ij i j ij

U  , U are the numbers unique to each site (Digby and Kempton 1987).  Jaccard similarity is i j

the proportion of the total number of species at two sites that are shared by the sites, and it
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ranges between 0 (no species in common) and 1 (identical species lists at the two sites). 

A set of all pairwise similarities for N sites can be conveniently displayed as a lower

triangular matrix (e.g., Table 1), with N(N-1)/2 unique similarities, a total that does not

include the diagonal self-similarities (s =1). In a proposed classification, the N sites eachii

belong  to one of K classes, so that class k has n  sites, k=1,2...K. With the similarity matrixk 

rows and columns appropriately ordered, the matrix can be partitioned into rectangular blocks

of between-class similarities and triangular blocks of within-class similarities (Table 1).

2.3 Multidimensional Scaling

 Multidimensional scaling (MDS; Kruskal and Wish 1978; Digby and Kempton 1987;

Johnson and Wichern 1988) can provide an effective ordination of similarities among the N

sites (Clarke and Green 1988; Smith et al. 1990). To create the MDS ordination, similarities

are first converted to dissimilarities (distances) d . For the Jaccard measure, as well as otherij 

similarities spanning the range (0,1),  d =(1-s ) (Digby and Kempton 1987).  MDS thenij ij

locates the N sites on a two- or three-dimensional scatter plot such that plotted intersite

distances represent the N(N-1)/2 dissimilarities as faithfully as possible. The MDS algorithm

determines plotting locations by  minimizing a "STRESS" measure of the differences between

plotted and true dissimilarities (Kruskal and Wish 1978). 

With the sites (points) on the plot coded by class membership, the MDS plot can

depict the strength of a proposed classification (Figure 2; Clarke and Green, 1988; Smith et

al., 1990). If the classification is strong, then sites within the same class will appear clustered

together on an MDS plot (each class is compact), and plotted distances between the clusters

will be relatively large (classes are isolated). 

Smith et al. (1990) advocate the use of metric MDS, in which plotted distances reflect

the numerical magnitudes of dissimilarities. Clarke and his colleagues (Clarke and Green

1988; Clarke 1993; Clarke and Warwick 1994) prefer the robust, nonmetric version of MDS,

in which plotted intersite distances are determined by trying to preserve only the rank order of

the original dissimilarities (Kruskal and Wish 1978; Johnson and Wichern 1988).  

Two- or three-dimensional MDS plots are valuable exploratory tools, but they can

misrepresent class compactness and between-class distances, if dissimilarities are strongly
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multidimensional.  The reduction of a high-dimensional configuration of N points, as

represented by the original dissimilarity matrix, to a low-dimensional representation usually

involves substantial distortion of at least some dissimilarities (i.e., STRESS is high). 

Nonmetric MDS ordinations generally have lower STRESS than their metric counterparts

(Kruskal and Wish 1978), but the nonmetric plot axes are unitless and plotted distances

between sites can only be interpreted ordinally. 

The two-dimensional nonmetric MDS ordinations of the Willamette River sites (Figure

2), computed separately for each sampling year, each have STRESS values in the "fair" to

"poor" range, indicating that relative distances between plotted sites can be misleading

(Johnson and Wichern, 1988; Clarke, 1993). Nevertheless, the plots indicate distinct grouping

of the sites by river sections A to D in all three years, with the weakest group separation seen

in 1944.   

2.4 Permutation Tests

Permutation procedures can test whether between-class similarities are, on average,

less than within-class similarities, for a specific a priori classification (Mielke et al. 1976,

1981; Clarke and Green 1988; Smith et al. 1990). The test is based on a null hypothesis of

"no class structure" (Gordon 1981, 1987; Everitt 1993). Here I will only sketch the approach,

using Smith et al.'s (1990) test statistic and notation. Edgington (1995), Manly (1991), and

Good (1994) give general introductions to permutation testing. 

Let M= /  be the ratio of the mean  of all between-class similarities (contained in

rectangular blocks of Table 1), to a mean  of all within-class similarities (contained in

triangular blocks of Table 1).  If   is the mean of all similarities such that one site is in

class j while the other is in class k (off-diagonal entries of Table 1 Inset), then 

 .  Similarly,  , where  is the mean of all

similarities such that both sites are in class k (diagonal entries of Table 1 Inset). Mielke

(1979) argues that the factor n /N, with its unequal weighting of individual similarities whenk

class sizes n  are unequal, yields a more efficient estimate of .  k

If the "no class structure" null hypothesis were true, then between- and within-class
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similarities should be approximately equal, yielding a value of M close to 1.  The permutation

distribution of M under the null hypothesis can be estimated by repeatedly permuting the class

labels of the sites, while keeping class sizes n  constant, and calculating M for eachk

permutation. A small value of M=M   observed for the classification being tested, relative toobs

the null hypothesis permutation distribution, indicates that between-class similarities are

indeed smaller, on average, than within-class similarities. Specifically, the P-value for the test

is the probability of obtaining, by chance, an M from this distribution that is less than or

equal to M  .  That is, , where I[ ] is the (0,1) indicator and N  is theobs p

total number of possible permutations. 

In general, N = N!/(n !n !...n !), with a somewhat smaller total if two or more classesp 1 2 K

have equal sizes (Smith et al. 1990).  For cases having N <10000, I used Berry's (1982)p

algorithm to enumerate all N  permutations.  For larger N  , I selected a random subset of sizep p

N =10000 from the set of all permutations (Jackson and Somers, 1989). The P-value is thenR

estimated as the proportion of (N  +1) M-values (the randomized subset, plus M  ) that doR obs

not exceed M  (Manly, 1991; Edgington, 1995).obs

For the Willamette sites from 1992 (Table 1), M =  /  = 0.35/0.61 = 0.57, a valueobs

that was less than all 10000 randomized M  generated by site class permutations. Hence, P isi 

estimated to be <0.001, giving quite strong evidence that the river sections effectively

separate 1992 fish assemblages into distinct groups. 

Permutation tests of class structure can be formulated in several ways. For example,

since the total of all similarities in a matrix is constant over all permutations, either  or 

alone is an equivalent statistic to M (Smith et al. 1990).  Sokal and Rohlf's (1995)

permutation statistic is a Mantel-type correlation between the partitioned dissimilarity matrix

and a same-sized matrix containing 0's, with 1's in positions corresponding to between-class

dissimilarity. Clarke and Green (1988) use medians, rather than means, of between- and

within-class dissimilarities to construct a permutation statistic that is consistent with their

other rank-based similarity analyses. Finally, Gordon (1994) applies the Mann-Whitney U-

statistic to the ranks of combined dissimilarities within one class and between its objects and

those outside the class, in order to assess the genuineness of that class.  Because Gordon's
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(1994) classes are a posteriori clusters, the permuted dissimilarity matrix itself is not an

appropriate null model. Instead, Gordon (1994) bases his randomization tests on null models

for the underlying multivariate data from which the dissimilarities are derived.  

3. Mean Similarity Dendrograms

Smith et al. (1990) suggest that permutation tests be accompanied by examination of

the matrix of mean within and between-class similarities (e.g., Table 1 Inset), to assess

whether the differences between  and  have any practical, as opposed to statistical,

significance (see Rohm et al. 1987, for an example).  In addition, a significant M statistic

could result if only one of several classes was compact and isolated, while the others were

diffuse and poorly separated. Where more than two classes are involved, the mean similarity

matrix could suggest follow-up tests for specific pairs of classes (Smith et al., 1990).  The

following sections show how mean similarities can be plotted in a dendrogram format,

providing a clear and succinct summary of various features of a mean similarity matrix. The

plots are especially useful for comparing several matrices.

3.1 Dendrograms for a Single Factor

 For a single classification factor, one can construct a dendrogram with branches for

each class joined at a node plotted at   (Figure 3). Branches terminate at  , giving branch

lengths of -  (Figure 3). Ideally, classes will be about equally isolated and compact; that

is, the dendrogram's branches will be long and of approximately equal length. Unlike MDS

plots, the mean similarity dendrogram has an accurate scale of the original similarity units. It

is clear from Figure 3, for example, that site pairs  in different river sections in 1992 shared,

on average, fewer than 40% of their fish species, while pairs within the same section shared

between about 55% and 70% of their species.

The mean similarity dendrogram provides an operational definition for the strength of

a classification. In "strong" classification, classes are generally isolated (  is small) and

relatively compact (each  is large relative to ). A strong classification thus has a small

value of M. The Willamette river sections could be regarded as a strong classification of fish
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communities in 1992 (Figure 3), although the practical significance of the plotted differences

between  and   must ultimately be assessed on ecological, rather than statistical, grounds. 

With its focus on individual within-class means, the dendrogram format of Figure 3

seems best suited to assessing overall classification strength and to displaying heterogeneity of

within-class similarities across classes. In a clear analogy to one-way ANOVA, a single class

with high  and a small sample size could produce a significant M statistic, even if

separation between the other classes was relatively weak.

By plotting only the overall  , the dendrogram format does not display the separation

between all pairs of classes.  One could link the branch ends with overlapping sets of two-

pronged dendrograms to show all possible , but such a plot would be difficult to untangle

visually for more than a very few classes. However, the dendrogram can effectively display

selected between-class means that are of particular interest. 

 For example, because fish habitats change gradually and continuously along the

Willamette River, one would expect site pairs from immediately adjacent river sections to be

more similar than sites  separated by one or two sections. This is confirmed by plotting

dendrogram nodes at the means  of adjacent sections (immediate subdiagonal of Table 1

Inset). In 1992, between-section mean similarities for adjacent sections were consistently

greater than the overall between-section mean , but they were still less than mean

similarities within the adjacent sections (Figure 4). 

If one is particularly interested in displaying the separation between all pairs of

classes, then an ordination of all sites (Figure 2) will likely be more effective than a

dendrogram. An attractive option is to use the matrix of mean similarities itself as the starting

point for an ordination of the classes (Digby and Gower, 1981). Using principal coordinates

analysis and a suitable transformation from similarities to squared distances, the centroids of

K classes can be plotted in at most (K-1) dimensions with no distortion in mean between-class

squared distance (Digby and Gower, 1981; Gower, 1966; Digby and Kempton, 1987). Once

the class centroids have been plotted, Digby and Gower (1981) show how individual sites can

be added to the plot so as to minimize distortion in the distances between each site and each
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class centroid.

The compact shape of the mean similarity dendrogram also facilitates comparison of

multiple classifications. All three survey years on the Willamette River show that river

sections strongly classify fish assemblages, with the 1983 and 1992 surveys having nearly the

same patterns of between-class and much greater within-class similarities (Figure 5). In the

1944 dendrogram   is actually less than , indicating that fish communities were as

variable within the upstream section D as they were throughout all four river sections (cf. the

1944 MDS plot in Figure 2).  In this case, class D is not compact, relative to , even though

the classification as a whole is fairly strong (M=0.77, P<0.001).

Apart from section D, the branch lengths of the 1944 dendrogram are similar to those

of 1983 and 1992. However, the entire 1944 dendrogram is shifted toward smaller Jaccard

similarities, relative to 1983 and 1992.  Such a systematic shift in   and  would not be

reliably detected on MDS plots.  The lower mean simiarities for 1944 are explained by the

sparser list of species in that year at all sites, as compared with 1983 and 1992. The Jaccard

measure is known to be positively correlated with the total species count (Jackson et al.,

1989). The sparse species lists in 1944 were probably due to the less efficient fish sampling

methods used in the 1944 survey (Hughes and Gammon 1987). A more informative

comparison of the river sections and their classification strengths across all three years would

thus require reconciling the different sampling methods in 1944 and would also employ an

alternative similarity measure, one that is resistant to differences in total species counts

(Jackson et al., 1989).  

4. Similarity Analyses for Two Factors

4.1 Data Sources and Evaluation Objectives for Two-Factor Example

 Fish communities were sampled in wadeable streams in the Willamette Valley and

Cascade Mountains of Oregon, as part of the US Environmental Protection Agency's

Environmental Monitoring and Assessment Program, in cooperation with Oregon State

University (Herlihy et al., 1996).  The 28 streams discussed here (Figure 6) were sampled in

1993 and were classified by ecoregion (C=Cascades, V=Willamette Valley), and also by size
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(S=Small,  M=Medium).  The ecoregion land classification delineates large areas having

similar geology, climate, land surface forms, potential natural vegetation, soils, and land use.

It was designed as a geographic framework suited to a wide range of resource management

issues (Omernik 1987; Omernik and Griffith 1991). The stream size classes correspond

approximately to Strahler stream orders 1 (Small) and either orders 2 or 3 (Medium) (Herlihy

et al., 1996). Each of the 28 streams was sampled at one site and contributed a single

observation to the data set.

 The ecoregion-by-size classification is truly factorial, in the sense that Small and

Medium streams have the same definition for both ecoregions. The factorial class structure

poses several classification questions, arising out of clear parallels with factorial analysis of

variance (Clarke 1993; Clarke and Warwick 1994).  Do either or both factors offer significant

classifying strength?  Which of the two factors, ecoregion or size, has the greater

classification strength and can be considered the "primary" factor?  Finally, is there evidence

for an interaction, in the sense that the classification strength of one factor is markedly

different for the different levels of the other factor (Clarke 1993)? 

Unlike in earlier studies of fish fauna in these ecoregions (Hughes et al. 1987;

Whittier et al. 1988), the 28 sampled streams spanned a full spectrum of human disturbance

histories and included both native and nonnative taxa. In addition, a few Valley streams

partially drain areas in the adjacent Oregon Coast Range ecoregion and might be expected to

take on characteristics of streams in that ecoregion. For these reasons, the classification

strengths of ecoregion and size might be masked by high within-class variability. 

4.2 Interaction and Relative Factor Strengths

A nonmetric MDS plot  shows a clear left-right separation of Valley(V) and

Cascades(C) streams (Figure 7). The Small (S) versus Medium (M) separation is not so clear,

particularly for Valley streams, and this separation fails to emerge any farther in a three-

dimensional MDS scatterplot (STRESS=0.11, plot not shown).  Mean Jaccard similarities

between Cascade and Valley streams are near zero, regardless of stream size (Table 2). 

Mean similarities (Table 2) for this 2x2 classification can be conveniently displayed by

plotting two-branched dendrograms for one factor (Ecoregion or Size) separately within each
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level of the other factor. The procedure is then repeated with the factors interchanged,

resulting in four simple dendrograms (Figure 8). The four dendrograms and their associated

permutation test results (Table 3) show that Ecoregion is a stronger classifying factor than

Size. Branches are longer, because between-class similarities are smaller, for Ecoregion

classes (upper two dendrograms, Figure 8) than for Size classes (lower two dendrograms).

The high mean similarity within the set of small Cascade streams (Table 2, Figure 8) is due

to five of the six streams containing the same, single fish species. 

Size appears to be a somewhat stronger classifying factor in the Cascades streams than

in the Valley, as shown by longer branches in the Cascades dendrogram (Figure 8) and by a

smaller M for Size in Cascade streams than in Valley streams (Table 3). This evidence for an

interaction between the two factors is not as clear when comparing the classification strengths

of Ecoregions for the two Size classes. Even with some evidence of interaction, the four one-

way M statistics of Table 3 are all smaller than would have occurred by chance, so it may be

reasonable to consider an overall measure and test of Ecoregion strength across both Size

classes. Following Clarke (1993) and Edgington (1995), one could average the Ecoregion M

statistics for Small and Medium streams (Table 3), and then compare this with average M-

values generated by permuting Ecoregion class assignments separately within the two Size

classes.  

4.3 Hierarchical Dendrograms

If factor interactions are small enough so that it is reasonable to evaluate the overall

strength of a single factor, then a hierarchical dendrogram provides a concise display of mean

similarities for multiple classification factors. In Figure 9, Ecoregion, being the stronger of the

two factors, is designated as the primary factor, with stream Size as secondary. The Ecoregion

(primary factor) dendrogram is plotted at the values of  and  calculated by pooling the

Size classes within each Ecoregion. Note that the use of these pooled statistics in an overall

test of a single factor would not be appropriate if interactions were nonnegligible or class

sizes were unequal. Dendrograms for the secondary factor (Size) are then added for each level

of the primary factor, with secondary factor branch ends and nodes plotted at  and ,
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respectively, calculated within each level of the primary factor (Figure 9). This hierarchical

format is also helpful in assessing relative factor strength. If the weaker of two factors (Size)

is instead plotted as the primary factor, and the stronger (Ecoregion) is plotted secondarily,

then the treelike shape seen in Figure 9 is lost. 

An alternative format for Figure 9 is obtained by plotting the node for the Size classes

within Cascade streams at  rather than at  for Size, and doing likewise for Valley

streams. The primary node (for Ecoregion) can then be plotted at the mean of all the

similarities, that is, at the  value for all sites placed in a single class. The resulting

dendrogram shows the consistency and magnitude of progressive increases in mean within-

class similarity as one uses zero, one, or two factors to classify the sites. This within-means

format is not as visually complex as the Figure 9 format and is easier to read if one has more

than two factors and/or multiple classes per factor. 

4.3 Application to an optimal classification

 The concise format of the hierarchical dendrogram recommends its use for comparing

alternative multiway classifications. As an illustration, the a priori Ecoregion-by-Size

classification can be compared to a posteriori groupings derived from a clustering algorithm.

Such comparisons have been frequently, but only qualitatively,  used to evaluate ecoregions

and other land classifications from site-level data (e.g., McDonough and Barr 1977; Hughes

and Gammon 1987; Hughes et al. 1987; Omernik and Griffith 1991).   

I performed a cluster analysis on the 28 Valley and Cascade streams, based on the

Jaccard similarity matrix. I used group-average linkages to join sites and clusters (Everitt

1993), for consistency with the general strategy of comparing mean between and within-class 

similarities. The resulting dendrogram was cut at the similarity level of 0.22 (dissimilarity =

0.78) to yield a class structure similar in dimensions to the Ecoregion-by-Size classification

(Figure 10). That is, four site clusters were selected in a two-level hierarchy. Two outlier sites

were reassigned to the four main clusters, based on close comparison of their species lists

(Figure 10). 
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At the top level, the cluster analysis created two groups exactly matching the Valley

and Cascades classes (apart from the outliers), giving convincing evidence for the primacy

and optimality of the Ecoregion classification (Figure 10). Each secondary cluster, however,

contained a mixture of Small and Medium streams (Figure 10). As one would expect from an

optimal classification, hierarchical mean similarity dendrograms have roughly equal branch

lengths within each primary and secondary cluster (Upper panel, Figure 11). Comparison of

the dendrograms for cluster-derived and Ecoregion-by-Size classifications reveals the extent to

which stream Size is a suboptimal second-level classifier (Figure 11). The optimal second-

level clusters do indeed have lower between-class mean similarities and longer branches than

do the Size classes within Ecoregions (Figure 9), but the differences between the two

dendrograms may not be significant ecologically. In such a case, little would be gained by

searching for a second-level factor that classifies fish communities more strongly than stream

Size. 

More generally, mean similarity dendrograms can help assess the high-level partitions

generated by any numerical clustering method. Given that clustering methods may even

generate classes for random data (Everitt 1993), assessing the strength of cluster-derived

classes is especially important. 

5. Discussion

Mean similarity dendrograms convey classification strengths through conceptually

simple comparisons of within and between-class similarities. As a result, they may prove to 

be an attractive, nontechnical tool for evaluating environmentally-oriented land classifications.

The concise dendrogram format allows visual comparison of several different classifications,

such as those produced by different similarity measures or clustering algorithms. Unlike most

ordinations, the dendrograms depict class separation and compactness directly in the original

units of the chosen similarity measure.

The dendrogram format displays the relative compactness of individual classes by

plotting within-class mean similarity for each class. These mean similarities are compared to
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the average of all between-class similarities to assess the overall strength of a class structure. 

However, the dendrogram cannot easily display mean distances between all pairs of classes,

and ordinations based on either the full similarity matrix or the reduced matrix of mean

similarities are likely to give a clearer picture of relative class separation. For a priori

classifications, plotting positions of dendrogram nodes and branches are the components of

statistics used in permutation tests of "No class structure". 

The extension of dendrograms to more than two factors is straightforward and limited

only by the complexity of the resulting plot. In addition, the plotting format for two or more

factors need not be confined to a crossed design. For example, a Size-by-Ecoregion

dendrogram would still have been helpful if the Size class definitions for Cascade streams did

not match those for Valley streams. 

No attempt has been made here to show standard errors or confidence intervals for

similarities on the dendrograms. The lack of independence among pairwise similarities makes

it unclear how to interpret estimates of their variance and is an underlying reason for the

necessity of permutation-based inference. Smith et al. (1990) note how inflated error rates can

result when this dependence is overlooked and methods such as t-tests are applied to grouped

similarities. 

In this paper, I chose to plot the means of within and between-class similarities, for

consistency with Smith et al.'s (1990) permutation statistic. But the dendrograms could just as

easily display medians, as used by Clarke and Green (1988) in their permutation tests.

Dendrograms could also be used to depict statistics of dissimilarities or distances, rather than

similarities. Although dissimilarities can always be transformed to similarities by subtraction

from a constant (Gordon 1981; Digby and Kempton 1987), there are some dissimilarity

measures, such as Euclidean distance, that are more readily interpreted in their original units.

A dissimilarity dendrogram could accompany a permutation test of whether mean between-

class dissimilarity significantly exceeded the within-class mean (Smith et al. 1990).
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Table 1. Jaccard similarities between fish assemblages sampled at Willamette River sites, 1992.

Sites are identified by their distance (km) from the river mouth in Portland, OR, and are

grouped by river section. Inset: Mean similarities between and within river sections. 

SECTION    SITE                                                                     MEAN SIMILARITY

2  1 A .56

6 .55  1 B .39 .61

10 .50 .78  1 C .26 .44 .70

A 14 .40 .67 .86  1 D .26 .32 .47 .60

27 .40 .50 .62 .71  1 A B C D

35 .27 .50 .62 .71 .71  1

40 .31 .50 .45 .50 .67 .50  1

47 .25 .45 .40 .44 .30 .44 .45  1

B 63 .25 .33 .40 .44 .30 .44 .45 .56  1

77 .27 .43 .38 .42 .42 .42 .67 .50 .64  1

93 .25 .33 .40 .44 .30 .44 .45 .75 .75 .50  1

124 .14 .21 .25 .27 .17 .27 .21 .50 .36 .27 .50  1

150 .20 .27 .31 .33 .23 .33 .36 .42 .55 .40 .55 .64  1

C 182 .27 .33 .38 .31 .21 .21 .33 .38 .38 .38 .50 .73 .62  1

206 .21 .29 .33 .25 .15 .25 .29 .45 .45 .33 .60 .70 .73 .82  1

232 .07 .21 .25 .27 .27 .40 .31 .25 .25 .27 .36 .33 .39 .36 .42  1

240 .11 .29 .25 .27 .27 .36 .47 .33 .33 .41 .33 .50 .53 .50 .47 .62  1

D 283 .12 .25 .29 .21 .21 .31 .33 .29 .29 .29 .38 .46 .50 .57 .67 .58 .60  1

296 .19 .30 .26 .21 .21 .28 .37 .33 .40 .40 .33 .39 .50 .47 .53 .47 .67 .65  1

                   SITE 2 6 10 14 27 35 40 47 63 77 93 124 150 182 206 232 240 283 296

      SECTION A B C D



21

Table 2. Mean Jaccard similarities and number of sites, for fish assemblages in wadeable

Willamette Valley and Western Cascade streams, 1993.  S=Small, M=Medium, C=Cascades,

V=Valley.

# Sites SC MC SV MV

SC 6 .67

MC 7 .23 .31

SV 5 .11 .09 .25

MV 10 .03 .06 .21 .28

Table 3. Test statistic M= /  and P-value, for "No class structure" tests of a secondary

factor (Ecoregion or Size), separately within each level of a primary factor (Size or

Ecoregion). P-values are not adjusted for multiple tests.

Primary Factor Level Secondary Factor M P

Medium Size Ecoregion 0.22 <0.001

Small Size Ecoregion 0.23   0.004*

Cascades Ecoregion Size 0.49   0.005*

Valley Ecoregion Size 0.78   0.004*

* Exact values, from all possible permutations.
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Figure 1.  Willamette River Basin, Oregon. Circles denote sites on mainstem Willamette

River sampled for fish in 1983. Horizontal lines delimit river sections A to D.

Figure 2.  Nonmetric multidimensional scaling ordinations of sites in Willamette River

sections A to D, based on Jaccard similarity between fish assemblages, for fish

surveys from 1944, 1983, and 1992.

Figure 3.  Mean similarity dendrogram for fish assemblages in Willamette River sections A to

D, 1992.  Dendrogram node plotted at overall mean between-section similarity and

branches terminate at mean within-section similarity for each section.

Figure 4.  As in Figure 2, except adjacent river sections are joined at their mean between-

section similarity. Dashed line denotes overall mean between-section similarity.

Figure 5.  As in Figure 2, for comparison of 1944, 1983 and 1992 fish assemblages. M

statistic and P-values are for a test of "No class structure" in each year, and

parentheses contain number of sampled sites. 

Figure 6.  Cascades and Willamette Valley Ecoregions of western Oregon, showing sampling

locations for Small (triangles) and Medium (circles) streams. 

Figure 7.  Nonmetric multidimensional scaling ordination of fish assemblages at 28 stream

sites in Willamette Valley (V) and Cascades (C) ecoregions in 1993. Stream size

denoted by S (Small) or M (Medium). SC(5) denotes 5 Small Cascades streams having

the same, single fish species. 

Figure 8. Mean similarity dendrogram for fish in wadeable Oregon streams in 1993, classified 

by Ecoregion (V=Valley, C=Cascades) within Size classes and also by Size (S=Small,

M=Medium) within Ecoregion.

Figure 9. Hierarchical mean similarity dendrogram for wadeable Oregon streams, with

Ecoregion as the primary factor and Size as the secondary factor.

Figure 10. Dendrogram for group-average clustering of wadeable Oregon streams, with sites

labeled by Ecoregion and Size class (see Figure 7 legend). Dendrogram is cut (dashed

line) to create four clusters (C1 to C4). Outlier sites (1) and (2) are reassigned to C3

and C1, respectively.

Figure 11. Mean similarity dendrograms for cluster-derived and Ecoregion-by-Size

classifications of wadeable Oregon streams. 
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